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Wigner-Seitz model of charged lamellar colloidal dispersions
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A concentrated suspension of lamellar colloidal parti¢keg., clay is modeled by considering a single,
uniformly charged, finite platelet confined with co- and counterions to a Wigner-8€z cell. The system
is treated within Poisson-Boltzmann theory, with appropriate boundary conditions on the surface of the WS
cell, supposed to account for the confinement effect of neighboring platelets. Expressions are obtained for the
free energy, osmotic, and disjoining pressures and the capacitance in terms of the local electrostatic potential
and the co- and counterion density profiles. Explicit solutions ofitlearizedPoisson-Boltzmann equation are
obtained for circular and square platelets placed at the center of a cylindrical or parallelepipedic cell. The
resulting free energy is found to go through a minimum as a function of the aspect ratio of the cell, for any
given volume(determined by the macroscopic concentration of platgl@iatelet surface charge, and salt
concentration. The optimum aspect ratio is found to be nearly independent of the two latter physical param-
eters. The osmotic and disjoining pressures are found to coincide at the free energy minimum, while the total
guadrupole moment of the electric double layer formed by the platelet and the surrounding co- and counterions
vanishes simultaneously. The osmotic equation of state is calculated for a variety of physical conditions. The
limit of vanishing platelet concentration is considered in some detail, and the force acting between two coaxial
platelets is calculated in that limit as a function of their separafi8t063-651X97)14508-1

PACS numbds): 82.70.Dd, 68.10-m

[. INTRODUCTION Given proper boundary conditions, the Wigner-Seitz model
reduces the initial many-polyion suspension to the much
Charge-stabilized colloidal suspensions have been the olsimpler problem of a single polyion confined with its asso-
ject of intense theoretical scrutiny, starting with the classicciated co- and counterions to a cell of volume equal to the
work of Derjaguin and Landau and of Verwey and Overbeekvolume per polyion of the dispersion. The shape of the WS
(DLVO) [1], on interacting electric double layers, which cell should reflect the shape of the polyion: It will be an
took its roots in the even earlier work of Go[8] and Chap- infinite slab for a membranks], an infinite coaxial cylinder
man [3] on double layers near infinite, uniformly charged in the case of a linear polyelectroly{®], or a concentric
planes. Following the latter pioneering contributions, a largesphere surrounding a spherical coll$i®].
body of work has been devoted to the planar geometry, Except in the case of spheres, the aforementioned models
which is relevant for electric double layers near macroscopi@nd calculations deal with the case of polyions of infinite
electroded 4] or near membranes of biological inter¢5i. extension(e.g., an infinite plane in the case of membranes or
DLVO theory applies to spherical geometry in particular,an infinite line or cylinder in the case of polyelectrolyte
and yields an effective interaction between the electricchaing. In this paper, we examine the case of rigid mem-
double layers surrounding spherical colloidal particles, in thebranes or platelets of finite size. Restriction will be made to
form of a screened Coulomb potential, the validity of which infinitely thin, uniformly charged circular or square platelets.
has been tested both theoreticdlB;7] and experimentally These may be considered as a reasonable model for disper-
[8]. The cylindrical geometry, appropriate fgmfinitely) sions of smectite clay particles, like the natural montmoril-
long, stiff polyelectrolyte chains, has been investigated alondpnite clays[13] or the synthetic Laponite clay44]. While
similar lines, starting with the work of Fuoss and collabora-the former are irregularly shaped polygonal particles, the lat-
tors[9,10]. The common framework of much of this work is ter are, to a good approximation, of a circular shégisklike
Poisson-BoltzmaniPB) theory, which is a mean-field ap- particles. The thickness of a real clay particle is of the order
proximation within the density functional theory of inhomo- of 1 nm, which is much less than lateral dimensidbapo-
geneous fluid$11]. nite disks have a diameter of typically 25 hnso that the
Poisson-Boltzmann theory applies equally well to the depicture of infinitely thin platelets is acceptable. The main
scription of the inhomogeneous distributions of co- anddifficulty in a statistical description of such platelets lies in
counterions around an isolated charged colloidal parfmie the considerable anisotropy of the particles and of their as-
polyion) suspended in an ionic solution, and to a concensociated electric double layers, compared to the much-
trated suspension of polyions, provided the “cage” of neigh-studied case of spherical colloids.
boring polyions is modeled by a Wigner-Seit#/S) cell of The main objective of this paper is to obtain expressions
appropriate geometry, to which each polyion is confinedfor the density profiles of co- and counterions around a cir-
cular or square platelet of finite size, confined to WS cells of
cylindrical or parallelepipedic geometry. The calculations are
*Electronic address: etrizac@physique.ens-lyon.fr carried out within linearized Poisson-Boltzmann theory, and
TElectronic address: hansen@physique.ens-lyon.fr the calculated profiles and potential distributions will be used
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to evaluate key equilibrium properties of concentrated lameleentrations of co- and counterions are not too high, a condi-
lar suspensions, including the free energy, the stress tensdipn which may not be fulfilled for the counterions in the
the capacitance, and the quadrupole moment of a platelet afmtimediate vicinity of a highly charged platelet. For a com-

its associated electric double layer. plete formulation of the electrostatic problem, the fa@nof
Preliminary accounts of parts of this work have appearedhe free energy functional must be supplemented by specify-
elsewherd 15-17. ing the boundary conditions satisfied by the resulting mean
electrostatic potential, or its gradient, on the surfacef the
Il. DENSITY FUNCTIONAL WS cell.
AND POISSON-BOLTZMANN THEORY The equilibrium density profilep®(r) are those which

o . o . minimize the free energy function&B), subject to the con-
It is instructive to repeat the derivation of the familiar straints(1), i.e.

Poisson-Boltzmann equation from the free energy functional

of the inhomogeneous fluid of co- and counterions contained SHp . p ]
in a WS cell, and subjected to the electric field due to the T T Maa=t,—, (5)
uniform charge density on the finite platelet placed at the 5p(r)

gﬁﬁfgeoghﬁzevgingﬁ;.: T Ztre];/ez(;az\?viec?;;:];cttgz ;rlggs(’)fth%vhgreﬂa i§ the Lagrang'e muItipIie.r associatgd with the con-
the platelet and—-Ze the total charge, in multiples of the s.tramt(l),.l.e.., the chemical potennal of species The func-

; . ' . tional derivative of the Coulombic terift,, reads
proton chargee>0) is negative, so that the counterions are
positive, while the co-ions are negative; both are assumed to SF
be monovalent. The local co- and counterion densitas coul
density profilesare denoted by ~(r) andp ™ (r), wherer is Sp=(r)
a position vector pointing inside the WS cell. ¥* and
N~ are the total numbers of co- and counterions inside th
WS cell, thep“(r) satisfy the normalization condition

=*eq(r). (6)

ith F.on=0, the functional derivatives are easily calcu-
ated and the optimum density profiles are found to be given
by the Boltzmann distribution

pr%r)dSr:Na, a=+,-, (1) p*(r)=pZexp(* Bee()}, @

where(} is the volume of the WS cell, which is equal to the where/5= 1/(kBT) 's the inverse temperature in energy units.

average volume per platelet in the colloidal suspension. FOr @ giveng.(r), Egs.(4) and (7) form a closed set,

Overall charge neutrality requires that which may be reexpressed as an inhomogeneous nonlinear
L partial differential equation for the potential(r), usually
N*—N"—-Z=0. (2 referred to as the Poisson-BoltzmafRB) equation:
The free energy functionaf[p™,p~ ] may be split into the de
usual ideal, Coulombic, and correlational contributiphs]: quo(r)+T[po+exp{—ﬁego(r)}—po_exp{+,8e<p(r)}]
F=Fiat Feour™ Feorrs 3) 4
v
with == ?qp(r) (8

Neglect of 7, Clearly points to the mean-field nature of PB
ol — 3« 3 «a _ corr
Fidlip }]_kBTQ:+’, fgd rp®(NlIn(Agp®(r)) —11, theory. The prefactorSpOi are equal to the fugacities
exp(B,ut)/Ai in the case of an open system, where the WS
w1 + _ 3 cell is in equilibrium with an infinite reservoir which fixes
FeallpH=5 Q{qp(r)+e[p (D=p (D]te(nd°r. the chemical potentiala.. . For a suspension of fixed ionic
composition (canonical ensemblg the poi are determined

In these equations , is the de Broglie thermal wavelength from the normalization conditiond). Equation(8) must be
of ions of speciegy; q (r) denotes thesurface charge den-  solved, subject to appropriate boundary conditions on the
sity of the platelet ang(r) is the total electrostatic potential surfaceX of the WS cell. If the surface is regarded as a
atr, which satisfies Poisson’s equation boundary between WS cells associated with nearest-neighbor
platelets, it is natural to impose that thermal component
) 4 me | _ of the electric fieldE= — V¢ vanish at each point oB. In
Vie(rn)=- ?qp(r)— T[p (D=p ] @ practice, the homogeneous version of the PB equd8pis
solved for all positiong outside the plateletr(¢ X ,), and
In the above expressiom, is the dielectric constant of the the usual discontinuity of the normal component of the field
solvent(generally water regarded as a continuous medium upon crossing the uniformly charged surfatgis taken into
(“primitive model”). The correlation parf,,, is not known account.
explicitly, but may be expressed within the local density ap- The PB equation has been solved numerically for circular
proximation[11,6]. .. Will be neglected throughout, an platelets of finite thicknes§.e., coinlike cylindery carrying
approximation which is reasonable, as long as the local cora positive edge charge, in the limit of an infinitely dilute
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suspension{ — ) [18]. In this case, the boundaby of the lll. FREE ENERGY AND PRESSURE TENSOR

WS cell is pushed out to infinity, the electrostatic potential The Helmholz free energf of the electric double layer

¢(r) can be chosen to vanish whirj—, and the prefac- around a colloidal particle inside a WS cell is the key ther-

tOI’SpO* reduce to the macroscopic co- and counterion num'modynamic quantity which must be evaluated with care

ber concentrationa™ andn™ (n*=n"). An analytic solu- 1 5719 Within mean-field PB theory, the free energy
tion of the PB equatioi8), for vanishing or finite platelet may in principle, be calculated by substituting the equilib-
concentratiom =1/, is available only in the limit of an jym density profilesp®(r), determined via the variational
infinite platelet in a WS slab; this geometry reduces the PrObprincipIe (5), into the functional(3) (with F.,,=0). This

lem to the classic one-dimensional Gouy-Chapman problergyyression of the free energy may be cast in the standard
[2,3]. For finite platelets, analytic solutions can be obtained, m

only upon linearization of the PB equatid®). For this pur-
pose, it is convenient to redefine the prefact«q’fssuch that

F=U-TS (15
p=(r)=p,exp= Belo(r)— " I, 9 Where the internal energy and the entropy are givefiley
whereg* is a reference potential to be specified. The result- 1
ing linearized PB equation reads U= Ef {qP(r)+e[p+(r)—p‘(r)]}go(r)d3r
QO
VZe(r) = Z[e(r) = vol=— 4—7Tq (r) (10 | iven2dr - Vo(r)-d
0 s b —8—77]9[ e(n] r—gf}gzso(r) ¢(r)-dS (16)
where the squared inverse Debye length=1/\2 and the g
constanty, are given by an
2 _ 4 —
Ky =4 Py + 0y ), M3 Ts=-k T 3 fﬂp‘”(r)[ln(/\ip“(r))—1]d3r
4me KT Py P, e a _
yo:<pg—p;>%+<p*=; °++p°,+qo*, (11b) =—kT 2 N In<poAi>+fQ{e[p+(r>—p (n]
D 0 0
Xo(r)+k,Tlp (N +p~(r)]}d°r. 17

and/’Bz,BeZ/s is the Bjerrum Iength/(B:O.7 nm in water

at room temperatuje The normalization condition&l) now |, Egs.(16) and (17), the p(r) are the equilibrium profiles,
reduce to and use was made of Edg) and(7) in going from the first
N to the sgcor]:d Iitr;]e i(rj].each.of Ithesi equations. Th?j re_sulting
+_N o+ *_ N expression for the dimensionless free enegjy reads, in
I S U (12 terFr)ns of the dimensionless electrogyatic potential
o O(r)=Bee(r),
where ¢ is the mean potential in the WS cell:

a a3 1
3 BF= > N In(psA%)—g—— ¢ ®(NVe(r)-dS
so=_f e(rd°r. (13 e 8%
QJao
+ “(N=p (N]P(r)—[pT(r)+p~
A particularly simple choice is thLEtO linearize the local JQ{[p (N=p (D]R)=Lp(n)*p ()]
densities arouna, i.e., to takep* = ¢ [16], in which case

+
and K§=47T/B(n++n’). (14 8w/

+

. [V(I)(r)]z]d3r. (18)
p,=n

It is worthwhile to note that linearized Poisson-BoltzmannExpression(18), valid within the nonlinear PB approxima-
(LPB) theory may be derived from the free energy functionaltion, involves integrations over the WS boundary surface
(3) (with F,,,=0) via the variational principl€5), provided  (which do not contribute if the boundary condition of van-
the integrand in the “ideal” contributiorf, is expanded to ishing normal electric field is adoptednd over the volume
second order in powers of the local densitigqr) from  of the WS cell, and is hence not very tractable. Equivalent
their meann® [6]. expressions for the free energy can be obtained by consider-

Before turning to the presentation of explicit solutions of ing generic charging processgk5,16,19. For a fixed cell
LPB theory for specific geometries, we address the problergeometry(volume and shapethe variation in free energy
of expressing and calculating key macroscopic quantities likelue to infinitesimal variations of the potential
the free energy, the stress tensor, and the osmotic pressuf@ (r)—®(r)+®(r)] and of the Bjerrum length
from the density profiles. (/B—>/B+ 5/3) is of the generic fornj16]
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1 6/B
- — : P(r)=k.T pe(r). (24)
8(BF) 877/5 i[CDV(&(I)) SOVD]-dS+BU /B Bl

o The compatibility of Eqgs.(22) and (23) plus Eq.(24) is

+f @5(g)d2r+[ln(p;Ai)]5N+ easily verified by considering a small local volume change
p 5Q) due to the displacement by an amougwt of a small area
+[In(p-A3)]6N_, (199  elementsX at the surface of the WS cell. The pressure ten-
0 sor (23) satisfies the mechanical equilibrium condition
where o= —Ze/3, is the surface charge of a platelet per V. ﬁ(r):o (25)

unit area. Expressions of the free energy can be derived from

Eq. (19) by considering various real or virtual charging pro- which, upon substitution of Eq23) into Eq.(25), and use of

cesses. In practice, we have calculatedising a constant Ppoisson’s equatiori4), is equivalent to the familiar force
Debye length charging process, from a situation where th@alance equation

platelet is neutralZ' =0) to its final charge 1’ =2Z). For
uncharged plateletd* =N =N _=Qng+Z2/2, wheren, is VP(r)=e[p"(r)—p (n)]E(r). (26)

t,\r;g —T\]ali Z‘:,()/gczr:(;agon('lgf‘;hi\r)v}; t?]ftgi?] aor:‘ ir:;;ﬁiter)sri(r)r::aeISS’ There is no obvious definition of the macroscopic osmotic
T 0T ’ Q- pressure of the co- and counterions within the present WS

step, during which the boundary condition of vanishing nor-model. An elementiS of the surface of the WS cell is sub-
mal electric field is enforced, the free energy changes by jected to the force:

g <> &

,85(F)=f c1>5(— d?r+[In(p"A3)]18N, dF=II-dS=|k T p“+o—E*ldS. (27
Ep e 0 B a=+,— 877

~|—[In(po‘A3,)]5N, . (20 It is hence tempting to define the osmotic pressure as
Integration along this path yields M=kT S =+ 81?2’ 29)
B a=+,— w
F(o)—F(o=0)= ja j @’ (r)d%r |do’ where the averages are taken over the total surface bounding
01 /3 the WS cell. The same expression fdr follows from the

(N)?— 724 volume derivative of the free energy, for a particular infini-
0 tesimal dilation of the WS cell. The latter is chosen such that
2 } for each surface elemedsS of the WS cell, the infinitesimal
volume element i) = dX 6/, where 6/ is a constant
7 |NO+ z/2] d_isplacemden(:fI alor;g theEgé);??]l t. Under these condi-
+=kTIn{ ——=+=1 . (21)  tions, we deduce from that
2 NO—Z/2

+ NokTIn[

0

4 a € 2 2
The result(19), valid for a given WS cell geometry, may be oF=— ksT&/a;‘_ ﬁp (r)dz—ﬂ&/ 352(“0) dz,
generalized to the case of an infinitesimal changeof the (29
geometry(shape and/or volumeof the cell. A calculation
given in the Appendix shows that for fixed numbers of co-so that
and counterionsN* andN™) in the cell, the resulting in-
finitesimal change in free energy reads iz lim i: —K Tp=— iﬂzz -1
0, Zer e P Tggv® '
SF=—kT X pa(r)d3r—81f [V ¢]2d%, 30
a=+,- JoQ mJ o Similarly, one may express the disjoining presslirg (i.e.,
(22 the pressure to be applied to maintain the parallel platelets of

a stack at a distande¢ which coincides with the height of the

where it has been assumed that the electric field has no noyg cel) by considering the variation of the free energ@p)
mal component on the WS surface. Under these CIrCUMg o increasingd by an infinitesimal amounsH: the cor-

stances, the previous expression &% is compatible with responding increase in the volume of the WS cell is

the usual definition of the pressure tensor in a charged MEs()— SSH., whereS is the cross section of the cell parallel to

dium [20], the platelet(cf. the prismatic geometries considered in the
following section$. By proceding as in the case of the os-
ﬁ=[P(r)+ %(E)Z - %E(r)@E(r), (23) motic pressure, one arrives at the required expression
I(FIS)

—1 Toas, & 2S_T7 S
= = + RN —
whereE(r) = —V¢(r), and for noninteracting ions, d dH ke TP SW[(V(P) IP=1z @Y
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FIG. 1. The prismatic cells
considered in this papeia) shows
a circular platelet in a cylindrical
cell, whereas(b) represents the
parallelepipedic cell containing ei-
ther a circular or a square platelet
lying in the dashed regioB&'.

a) b)

where the average is now taken over the cross se8ioe., IV. CYLINDRICAL GEOMETRY
on the surface of the WS cell parallel to the platelet, and the We consider first the case of disk-shaped platelets, of ra-

p;gpe%l tt(c)> ttmee prlnaézftljiigzgls igeaslgna%ﬂaxtﬁénﬁolrsmtglufo th((jeius ro. In Ref.[15] explicit solutions of LPB theory were
platelets 9 Obtained in terms of infinite series of Legendre or Bessel
Another instructive quantity is the capacitan@eof the functions, for spherical and cylindrical WS cells. We reex-

electric double layer associated with a platelet. For finitea e the latter geometry in some detail here. The cylindri-

o . . . cal WS cell is of radiuRR and of heightH =2h (cf. Fig. 1),
platelets, the definition o€ is ambiguous. We define the so thatQ) = 27rR?h. The electrostatic potential within the WS

: : H S’ -s_~§ _ . . . . .
capacitance in terms of the differenca& ¢)” "= ¢~ — ¢ cell is a functione(r,z) of the cylindrical coordinates and
between the potential averaged over the cross se&fiasf  , \unich satisfies the boundary conditions

the cell containing the platelet€ 0), and the corresponding

average on the surfac@midway between two platelets in a do(r,2)
stack g=H/2; cf. Fig. 1 for the case of cylindrical and par- : =0, (34a
allelepipedic WS cells The capacitance is thus defined by Il
©0)S ~S= de(r,z
C(Ap) . (32) @(r,2) o, (34b)
0z z==*h

The reciprocal of the capacitance defines a lengtis C ™1

which characterizes the thickness of the electric double layeki,ce these conditions. as well as the discontinuity of the
The total charge inside a WS cell is zero, and due to spacgactric field EZ(Z:Ot)’: —(dldz),_o= across the disk

reflection symmetry, the electric dipole moment associatedr ¢ y inyolve only the derivatives of the potential, one
with the charge distribution inside the cell vanishes. The f|rstma assumas=0 without loss of generalitjcf. Eq. (13)]
a priori nonvanishing multipole moment of the charge diS'Um):i/er thesgpgonditions the solugt]ion of the. Iinqe'arizec'j PB
tribution is the quadrupole momenQ=Q,,=—2Q,y '

——2Q..: equation(10) may be expanded in a Bessel-Dini sefi&5§]:
yy-

1 r
oes | ta et (0-p ()22 32—y #(r.2)= 2, A2 ynﬁ)’ (39
(33
wherey,, is then'™ root of J;(y)=—dJ,(y)/dy=0, andJ,
In the two following sections, the quantities defined in thisand J; are the Bessel functions of zeroth and first order
section will be calculated within cylindrical and parallelepi- (y;=0). The resulting differential equations for the coeffi-
pedic geometries, for disk-shaped and square platelets.  cientsA,(z) are easily solved, leading to the final result
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1 [ry\2costix (h—[z])]
®(r,2)=Bee(r,z)=pBeyot b\ R sinh(x_h)
D D
2 Mo = An\ll(knro)
+-= , 2
b Ri=2 y sinh(h/A ) J3(yn)
h—|z]
X cosh) ———]Jo(Kqr), (36)
Aq
where b=e/(27/go) is the Gouy length, Ap;=R/ | T

N x2R?, andk,=y,/R. 08 ‘ ‘
For any given macroscopic density of platelets,and 20
hence a given volum@ = 1/n of the WS cell, only the prod-

uct R?h is fixed. SinceR cannot be less than the disk radius

~X

- X
=X

ro, the aspect ratit/r,<(2wnrd) 1. At the upper limit of e e XX
this range, i.e., foR=r,, and with the chosen boundary <
conditions, the electrostatic problem reduces to that of an RN

infinite uniformly charged plane in a WS slab of width
H=2h. With R=r the potential in Eq(36) indeed reduces |
to the first two terms, which are independent of the radial ,

+ oh (8F"/3h),
x---> o h (8F"/8h),

coordinater, i.e.,

lim ®(r,z)=®(z)=Bey,+

RHTO

L

1 coslix (h—|z])]

kb
D

sinh( KDh)

2.5

h/r

o

4.5

FIG. 2. Variations of the free enerdy, the osmotic pressure

37)

IT, and the disjoining pressurH, with the aspect ratiqupper

o ) ) curves, parta)]. For illustrative purposes, the free energy has been
The above expression is precisely the solution of the oneshified by an arbitrary constant along the vertical axis. Also shown

dimensional LPB equation for an infinite uniformly charged s the total normalized quadrupdiiewer part,(b)]. The kinetic and
plane in a slab, and the familiar result(z) =exp(-«_2)/  electrostatic parts of the free energy variation are defined in the
(x_b) is recovered wheh— . appendixcf Egs.(A12a) and(A12b)]. In order to check the valid-

D

The density profiles calculated from the potentg8) via Y ©f Ed. (A15), we chogsen‘l: yngQSIZSk/_Z' The normalization
Eq. (9) are sensitive to the aspect ratiér, for a given cell pressurdl is deflneq with the macroscoplc+congentrat|ons of co-
volume Q. The “optimum” ratio is determined by minimiz- 2and counterions inside the celtlo=k T(p; +p,). The data
ing the free energyF with respect to this ratioF is calcu- shownigorresponqsto a circular platelet in a cylindrical cell, with
lated via the constant Debye length charging process, resulfs=10 "M, n=10""M, andZ=100.
ing in Eq.(21). The part of that expression which depends on
the ratioh/r for a given cell volume is 2(a). In this example, as well as under all physical conditions
that were investigatedr, goes through a minimum for a ratio
A= f”[f h/rg, such that the physical requirement tiRatr is satis-

0|Js fied. Moreover, the location of the minimum turns out to be
” practically independent of the charge densitycarried by
= 277] the disk, and of the salt concentratiog; in other words, the
0 ratio h/r, depends “only” on the WS cell volumé) or,
equivalently, on the macroscopic density of plateletd-or
any densityn, the system selects an optimal rakifry. The
wheregq(r)=¢(r,z=0) is the electrostatic potential on the yariation of this ratio withn in shown in Fig. 3. All figures
disk and the last line h_olds within the LPB apprOX|ma_1t|0n correspond t@ces= 78 andT =300 K.
only, wgere the potential can alyvays be expresseq in the The potentiak(r,z) and the resulting charge density pro-
form ¢?(r)=of(x,r). Substitution of Eq.(36) With o 506 highly anisotropic functions, as expected from the
z=0) into Eq.(38) yields platelet geometry. This requires that a large number of terms
(typically 50—400 be retained in the expansidB6) to en-

@ (r,z=0)d?r |do’

p

Mo '
f @g (r)rdr
0

r
do"=7'r(rf Ogog(r)rdr
0

(39

EA= E,Be B 1 Mo 2 1 sure adequate convergence. A typical example of equipoten-
z" T 2PEY0 2x_b| \ R/ tanh(x_h) tial lines is shown in Fig. 4.
If ng is the salt concentration in a reservoir which is in
” KDAan(knro) 39 osmotic equilibrium with the colloidal suspension, i.e., with
+4 . 39 - i insi
“~, yﬁJé(yn)tanhh/An) the co- and counterions inside the WS cell, then the salt

An example of the variation df with h/rg is shown in Fig.

concentratiomg inside the latter is, within LPB theory, re-
lated ton, by [15]
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FIG. 3. Variation of the optimal aspect ratio minimizing the free

energy with clay concentration, for,=10"3M.

Ng Z?n2  Zn
== /1+ — <,
n. 4(nl)? 2n]

S

(40)

which is an expression of the familiar Donnan effect.

The values of the potential and its gradient on the surface =
>, of the WS cell may be used to compute the pressiites

andII4, according to Eqs(28) and (31). For a given WS
cell volume (), the variations ofill and Iy with the ratio
h/r, differ: 114 decreases monotonously b& o increases,
while IT goes through a minimum fdv/r close to the “op-
timum” value minimizing the free energfcf. Fig. 2. At the

minimum of the free energy, the two pressures are seen tp)
coincide (I=1I1,). Taking into account the conservation of

the overall volumes(R?h)=0, Eq. (22) can indeed be re-
written as

5F—ER on I1-11 41
= EF[ —1g4], (41
3 -2 -1 ]o<°r 1 2 3
3
2
1
0 K,z

—2

T3

FIG. 4. Equipotential lines in the planettgr,xoz), with arith-
metic spacing between the isopotentige ¢=0.5 between two
succesive curvesHere,Z=100,n=10 °M, andny=10"3M. For
these parameters, the optimal aspect ratlv'ig=2.0. The reduced
radii of the disk and cylinder are, respectively,r,=1.59 and
KDR:4.14. The summation in Eq(36) was truncated after
Nmax= 50.
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FIG. 5. (a) Clay concentration dependence of the osmotic and
disjoining pressures, evaluated at the optimal aspect ratio minimiz-
ing the free energywherell=11,). The salt concentration in the
reservoir is held constanh{=10"3M) and defines the normaliza-
tion pressurd]esevoi= 2kBTng. (b) Variation of the osmotic and
disjoining pressures with the salt concentration in the reservoir
(ng). Forn;—0, II/II"** diverges like It , while II— const.

so that the extremum conditiafF=0 impliesII=1I1,. The
variation of IT=1I4 with the platelet concentration and
with the salt concentration is shown in Figgapand 5b) for
two values of the platelet charg& € 100 andZ=200). Af-
ter a shallow minimum, the pressukk is found to increase
with n (for fixed n{ in the reservoir, whereas it drops rap-
idly with increasingn;, towards the value of the osmotic
pressure in the reservoir. These tendencies are reminiscent of
the experimental and numerical results of Dubois and co-
workers concerning lamellar phases of “infinite” charged
bilayers[22].

The potential distribution may be used to evaluate the
capacityC from Eg. (32). The characteristic double-layer
thickness is easily calculated to be

2 h
tan K .
D

The variation of\. with platelet and salt concentrations is
illustrated in Figs. 6a) and Gb), for two values of the plate-

(42)

o
)\CI)\D(E
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0.50 ' ‘ ‘ ‘ the x, y, andz directions, respectivelycf. Fig. 1). The po-
et tential is naturally expanded in plane waves, compatible with
S the periodic boundary conditions, which are equivalent to the
0.40 %~ T . . ..
e T T condition of vanishing normal component of the electric field
T on the surfac& bounding the prismatic WS cell:
0.30 | e
&£ g
= Pl 9(n =20 p(kjexplik-r}, (43)
0.20 /,j/ e 7= 100 1
/2? *e—-x Z =200
ool X | with
3 Ny Ny n, 3
%0 0z 04 P 06 08 1.0 k_27T< L'L’H )’ (Nx,Ny,n;) e Z°. (44)
(a) n,,, (in 10" M)
0.38 ‘ ‘ In terms of Fourier components, E(.0) becomes
A7
0.36 -~
(K*+ k2)[e(K) = yodol= —a, k), (45
(<D
~ 0.34
< where
- 1 _ .
032 | qp(k)— a qu(r)exp{lkm}d r. (46)
Consider first the case of a circular plate{et disk of
0%%0 20 R 20 80 radiusr o, as in Sec. IViq_(k) is easily calculated to be
(b) n’ (in10” M) s
FIG. 6. (a) The characteristic double-layer thickndsee Eq. 3 (k)= ZerJ k 4
) : ; . q.(k) 1(Kjro), (47)
(42)] as a function of clay concentration, for the optimal aspect ratio P kH
minimizing F. The salt concentration in the reservoir is
n.=10"3M. (b) Variation of the reduced double-layer thickness with
with salt concentration fon=5x10"°M.
2
let charge . reduces to the Debye length whenro—R k=7 ne+n;.

and h—oo, which corresponds to the limit of a single uni-
formly charged infinite plane.

: : - The Fourier components of the electrostatic potential are
Finally, as illustrated in Fig. 2, the quadrupole moment of © P P

then determined by substituting E@L7) into Eq. (45), and

- . - A Snverse Fourier transformation leads to the desired result:
optimum” ratio h/ry, which minimizes the free energy.

This coincidence is systematic and may be related to an ex-

act result of Gruberet al. [21], provided the WS model O(r)=pep(r)=pLeyo

yields an accurate description of a regular, periodic stacking

of the plateletd17]. A partial explanation follows from the +2_7T To Jl(kHrO)COS(k )
calculation given at the end of the Appendix. When the Bolt- b L2, ez K X y
zmann’s weights(7) are linearized, the kinetic part of the Y

free energy variatioficf. Eq. (A12a)] as a function of the 1 cosr[(K2+kﬁ)l’2(h—z)]
aspect ratio is proportional to the total quadrupjaé Eq. X - = IR 48)
(A15)]. Figure 2b) shows this correspondance but also (k5T ki) sin h(«g +kj)™]

shows that the electrostatic part of the free energy variation,
defined from Eq(A12b), vanishes for the same aspect ratio

as the Kinetic one. The resulting free energy, as calculated from the constant

Debye length charging proceé2l) and(38), is

V. PARALLELEPIPEDIC GEOMETRY 2
1 4 Ji(Kjro)

L2Hbin, s ny 72 KF(K3+2)

(49

B
Instead of a cylindrical WS cell, we now consider a ZA_ Eﬁe?’o_
space-filling parallelepipedic cell of dimensiohX L XH in
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The potential is once more expanded in plane waves with the
result

— disc in a cylinder
+ disc in a parallelepiped
- square platelet

28
@ (r)=pBee(r)=pBeyo

— 2 sin(kJo/2)sin(kyl/2)
bL%(n, ny)e72

24 1
X ——Ccogkx+Kkyy)

kxky ( kl )1/2
2.2 } :
cosh (k2 +k?)Y34h—2)]
o' N (52)
sin{ h(x? +kf)*]
§ As in the case of a disk in a cylindrical WS cell, one can
™ check from Eq(52) that the potential goes over to that of a
§\ uniformly charged infinite plane whehy—L [expression
Q. (37].
The corresponding free energy is now
“*%0s 25 45 B 1
h/r, or2h/l, ZA: zﬁeYO
16 sin?(Kyl o/2)sir?(kyl o/2)
FIG. 7. Free energy and total normalized quadrupolb/vg for — 5 2 7 2
disks in cylindrical and parallelepipedic WS celp& 125 A); same IoL“Hbn, 0y iy 72 Kiky(k“+«?)
quantity as a function dofi/l = 2h/l, for a square platelet of iden- 53
tical area and surface charge in a parallelepipedic tgH 221 A). (53

The vertical lines emphasize the correlation between the minimum

of the free energy and the vanishing of the total quadrupole. Hereyhijle the quadrupole moment reads
ni=10"3M, n=2x10"°M, andZ=100.

Similarly, the quadrupolar moment may be calculated from tOt _ 4 2 (— 1)nZ
Eq. (48) to be Qplatelet |O n,=
” sin(kyl o/2)
" -2 )™}, 54
816 S (D & ko) D hryr et B

— Ny
Quisk  r§| n=1 ki +x2 o7 o K+ K2 e O
(50) Explicit calculations based on these formulas lead again to
results which are quite close to those obtained for circular
The key finding is that, for given platelet and salt concen-platelets under similar physical conditions, as shown, e.g., in
trations, the changes in free energy and quadrupole momergtig. 7. In particular, the “optimum” aspect ratio is charac-
induced by the change of topology of the WS cell, are practerized by the equality of the osmotic and disjoining pres-
tically negligible, in spite of the completely different analyti- syreg/an expression similar to E¢41) holds)], as illustrated

cal expressionfcf. Egs.(38) and(49)], as illustrated in Fig. in Fig. 8. However, the minima of the free energy and of the
7. A similar conclusion holds for the osmotic pressure cal-osmotic pressure do not coincide any more.

culated from EQq.(28) or the capacity evaluated from Eq.
(32.
We finally consider the case of a square platelet of side VI. INFINITE DILUTION LIMIT
I, within the above prismatic WS cell. In this case, the sur- The limit of | latelet tratiom. f fixed
face charge per unit area is= —Ze/l, while the Fourier | € limit of very low platele lcorlwe/n ratiom, t:)rz Ixe q
transform of the platelet charge density is now salt concentratlor_ns (or equiva e_ntyns), may be derived
from the expressions obtained in Secs. IV and V for pris-
matic geometries, by letting the volunfk of the WS cell go
to infinity. In this limit yo=0, and the serie86) and(48) go
xlo kylo over to the following integral representation of the reduced
sin| —— (51 -
2 potential:
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Since the discontinuity of the electric field upon crossing one
of the plateletdcharacterized by the surface charge density
a, (r)] is independent of the presence of the other platelet,

the solutione(r) of Eq. (58) is just the superposition of the
solutions for each platelet separately:

e(r)=@1(r)+ey(r). (59

This simple property is a consequence of the linearization,
and does not hold within nonlinear PB theory. The solution
of Eq. (58), and the resulting co- and counterion density
profiles may now be used to calculate the pressure tensor
(23) for given positions and orientations of the platelets. The

N force F; acting on platelei (=1 or 2 follows then from
o5 ‘ ‘ N ‘ integration ofIT over the two face§1§ andX; of the plate-
“0.3 05 07 0.9 let:
H/l,
FIG. 8. Free energy, osmotic, and disjoining pressures as func- Fi= —j ﬁ ds. (60)
tions of the aspect ratibl/l, for a square platelet in a parallelepi- E,L i

pedic cell. For illustrative purposes, the free energy has been shifted
by an arbitrary constant along the vertical axis. The data correspon8ince the normah; =dS /|dS| has opposite orientations on
to n=10"*M, n,=10"3M, Z=100, andl,=250 A. the faces, ;,i and2;, the kinetic contributionp“(r)k T to
the pressure tensg23), which are continuous across the
ro [ e V2K platelet, do not contribute to the for¢@0). The normal com-
®(r,z)= Ff dk Jo(kr)Ji(kr))——=—=-. (55  ponent of the electric fiel&=—V ¢, however, suffers a dis-
0 VKD+k continuity across the uniformly charged platelet, and hence
contributes to the surface integral in E0).
Along the z axis passing through the center of the disk The total electric fielcE in the immediate vicinity of the
(r=0), Eq.(55) reduces to platelet”, may be decomposed into a discontinuous and a
continuous part:

1
cp(r=o,z)=—b[e*KD‘Z|—e*KDVfo”2], (56) .
o E=E?+E==—on+E, (61)

which goes over to the familiar exponential solution of lin-

earized Gouy-Chapman theory in the limg—co (infinite ~ where the+ and— signs go with the upper¥(; ;) and lower
plane. The reduced potential at the center of the disk take:éE;yi) faces, respectively. Subsituting E¢61) into (60)
the value leads to the desired result:

—07=0) 1 O e
_e¢(rkBTZ ):r.b{l—exq—xt,fo)}- (57) Fi:"j Efd*s(i=12, (62

P,

P(0)=

This expression will be used in the concluding section toVhere the integration is now over the surface of the platelet.
evaluate the range of validity of LPB theory. For symmetry reasons, the only nonvanishing contribution of
The quadrupo]e moment around circular or square p|ateE|(C) to the surface integra! in EQGZ) is the eleCt-riC field due
lets vanishes identically in the zero concentration limitto the other platelet and its associated electric double layer.
(n—0) as a consequence of the theorem by Gruseal. N the case of two coaxial parallel disks, the force

[21]. F,=—F, is along the common axighosen to be the axis)
Finally consider the problem of determining the force act-and the result55) may be used to compute the gradient of
ing between two circular plateletslisks P; andP,, in the ¢ alongOz. The resulting force is easily cast in the form
limit of vanishing concentrationn—0), and for a given salt 4 1 d
concentration(in the limit n—0, ng—ng). Let (ry,ny) and F,(d)=(mr2) o f (%) ~exp| — — x2+:<2r§]dx
(r,,n,) be the center positions and normals of the two disks, e Jo X I'o b
and leteo(r) be the total electrostatic potential due to the two (63
disks and their electric double layergi(r) vanishes as ) _ ) o
[r|—. In the LPB approximationg(r) satisfies Eq(10), whered is the distance between the two disks. For any finite
with yo=0, and two source terms salt concentratiorfi.e., nonvanishings ), the decay of~,
with d is essentially exponential as illustrated in Fig. 9. In
the limit of vanishing salt concentratiom[§—>0), F, decays

like a power law. Fod>r,, we find in that limit

2

4
(VZ—KE)cp(f):—?[qpl(qupz(f)]- (58)
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0.0

|61/ 7

log,,(F/F,)

5.0 L f P L
0.0 1.0 2.0 3.0 4.0 5.0

d/ro 1 /\D/TO

FIG. 9. Variation of the forcé=, with the distanced between
the centers of coaxial disksFf=4m?r30%/ ). The four curves
correspond to different salt concentrations.

FIG. 10. Limits of validity for the linearized approximation of
PB theory, for a disk of radius, in the infinite dilution limit. The
dashed line corresponds to the case of an infinite p{am&vhich
caser is an arbitrary normalization Iength>\D denotes the Debye

3r% length andb is the Gouy length.

2d?

4o 1( wréﬂ) ’ (64

Fz(d) -~ d

&€

charge distributions in thermodynamic equilibrij&d] (in

Note that the forc€63) is repulsive at all distances. the present case, the theorem applies because of exponential
screenin@ A partial explanation of this correlation has been
given at the end of Sec. IV.

The limitations of the present LPB theory must be under-

While most of the existing theoretical literature on sus-lined. Returning to the expressi@h7) of the reduced elec-
pensions of charged lamellar particles or membranes deatgostatic potential at the center of @vlatedcharged disk, it
with the simpler one-dimensional problem of infinite chargedis clear that linearization of the Boltzmann factors in the PB
planes, we have examined in this paper the case of stacks @&uation(g) is justified only provided®(0)|<1, i.e., when

finite-size, circular, or square platelets corresponding, for in{p >\  (which corresponds to the limit of low surface
D

stance, to swollen clays. The intractable many-platelet prob- . .
lem is reduced to the much simpler problem of a single plateghargeg or high salt concentratigror Fo<A, andro</b].

let within an electrically neutral Wigner-Seitz cell of This latter condition is rather academic for Laponite clay
appropriate volume and topology. The co- and counteriorflisks (it yields Z<10). Figure 10 summarizes the limits of
density profiles have been obtained from analytic solutiongalidity of the linearized theory for an isolated platelet.
of linearized Poisson-Boltzmann equation with appropriateStrictly speaking, the above criteria apply in the infinite di-
boundary conditions on the surface of cylindrical and paralution limit n— 0, and we may expect that they become nec-
lelepipedic cells. The relevant characteristics of the electriessary but not sufficient conditions for finite concentrations
double layer and the resulting thermodynamic properties) [5], so that the shaded area in Fig. 10 should decrease.

have been calculated over a wide range of physical condiNeglecting the clay contribution to the Debye length, the
tions. The most notable results may be summarized as fobriterion)\D<|b| yields Z<2.3x 10”2, for a 10" molar

lows. . . .
. monovalent salt concentration, witl expressed in nanom-
(a) For a given cell volumd), the system selects an op- ; . .
eters. In practice, we carried out -calculations for

timal size ratio corresponding to the minimum free energy. _125 woical Si - i ticleshi
The selected size ratio is practically independent of the plater-o_ .5nm(a typical size of Laponite particlgsthis means

let charge density-, and of the salt concentration, but varies thatZ must be chosen less than about 40® "2 In fact,
with the macroscopic platelet concentration many of our ca}lculatlons were carried out far= 190, in

(b) The osmotic presurH and depletion pressuié, due which case, strictly spea_lklng, the salt concentration unld
to the co- and counterions have qualitatively different varia:nave to be 10" mol or higher for LPB theory to be appli-
tions with the aspect ratio for fixed, clay, and salt concen- cable. The case of lower salt concentration and more realistic
tration, but coincide at the optimum aspect ratio which mini-values ofZ (e.g.,Z=10® for Laponit¢ may be solved either
mizes the free energy. We have a simple explanation for thiy numerical solutions of the fulhonlinear PB equation or
coincidence but not for the observation that the osmotic presby retaining the linearized solutions presented here in con-
sure exhibits a minimum at the same aspect ratio as the frganction with an appropriate charge renormalization proce-
energy, at least in the case of circular platelets. dure inspired by the treatment presented in REf2] in

(c) The total quadrupole moment of the charge distribu-spherical geometry. The corresponding effective charge den-
tion in the WS cell vanishes at the optimal aspect ratio; thissity on the platelet might well be nonuniform. Work along
observation may be related to an exact property of neutrahese lines is in progress.

VIl. CONCLUSION
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APPENDIX

Consider the case of a charged platgfetonfined in a (A7)
WS cell with its neutralizing counterions and salt. A local
changeds() in volume of the cellwith or without conserva-
tion of the overall volumg changes the potential and the
microion densities, but not the charge density of the platelet.

The boundary conditions of vanishing normal electric field 5qp(r)=0 and J qP(r)go(r)d3r:O.
on the surfac& of the cell are enforced during this change. o0
It will be shown that when the total number of ions$, in
the cell are held constant, the free eneFgghanges accord-
ing to Eq.(22). From Eq.(16), the change in the internal
energy can be written

where it was remembered that

SinceSN* = 6N~ =0, the expression for the entropy simpli-
fies to

1 1 5S=k f a d3r+f d3r+J 5q dr.
5U=—f <q6¢+<paq>d3r+—f qeddr, (A1) S S e 2
2)a 2) 50 (A8)

where q(r)=q,(r)+e[p”(r)—p (r)] is the total charge ypon substitution of Egs. (A6) and (A8) into
density. It follows from Poisson’s equatiad) and integra-  §F = 85U —T48S, we obtain Eq(22),
tions by parts that
&
SF=—k T f “rd3r——f Vel?d3
o 2| prdr—ga] Vel

a=+,—

fqéqod?’r:f ¢5qd3r+i§g oV (5¢)-dS. (A2)
0 Q 47 Js

=—f II(r)d3r, (A9)

5Q

For any vector fieldA(r), the elementary variation of the

flux over the surfac&. can be written where the following local osmotic pressure was introduced:
8 3§A.ds = jgéA-dS+f V-Ad¥. (A3 - W)+ —— (V)2
( g ) g o (A3) T1(r) kBTa;ﬁ pU(N)+ 5 (Vo). (A10)

Near the surfac&,, the relation betweehl(r) and the pres-

With A= ¢V o, the above relation can be used to differenti- .
oo sure tensok23) is

ate the identity

H(r)=n2~H~n2, (A11)
é oV(p)-dS=0. (A4)
> so that the osmotic pressuremay be defined as the average
One finds of TI(r) over the surfac& [cf. Eqg. (28)].
The variationSsF can be partitioned into kinetic and elec-
trostatic contributions

& &

— V(8 ~dS=f d3r——f V)2d°r, .

Ao fﬁz@ (9¢) 5000977 ) (Ve SFKN= _ i T f p¥(nd¥,  (Al2a

(A5) B o7, - Jsa
so thatéU can be cast in the form SFel=— if [Ve]2ddr. (A12b)
8 5O
5U:f ©dq d3r+f q<pd3r—if (V)2d3r. Within linearized PB theory, we shall finally prove that,
Q 50 87 Jsa when the shape of the cell is modified at constant total vol-

(A6) ume, the resulting variation of the free energy is proportional
to the total quadrupole moment of the charge distribution
From Eq.(17) and relation(7), the change in entropy reads inside the cell.
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With the chosen boundary conditions, the total quadru-Consider the case of a cylindrical WS cell. Taking into ac-
pole defined from Eq(33) is count the conservation of the overall volume, it is straight-
forward to show that
&
2"§=§j€ o(NV(222-x*—y?)-dS.  (A13)
: SRk 1

_ T 2~fot
Within linearized PB theory, H—h e 2 Yok Qzy- (A15)

SFKN=pge(p*—p- J r)der. Al4
Belpg —py) aQ(P( ) (A14) A similar result holds for a parallelepipedic cell.
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